
Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Work-sharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example

1

OpenMP Memory Model

n  OpenMP assumes a shared memory
n  Threads communicate by sharing variables.

n  Synchronization protects data conflicts.
q  Synchronization is expensive.

n  Change how data is accessed to minimize the need for synchronization.

2

OpenMP Data Environment
q  Most variables are shared by default
q  Global variables are SHARED among threads

q  Fortran: COMMON blocks, SAVE variables, MODULE variables
q  C: File scope variables, static

q  But not everything is shared by default...
q  Stack variables in sub-programs called from parallel regions are

PRIVATE
q  Automatic variables defined inside the parallel region are

PRIVATE.

q  The default status can be modified with:
q  DEFAULT (PRIVATE | SHARED | NONE)

3

All data clauses apply to parallel regions, tasks and work-sharing constructs except
“shared” which does not apply to work-sharing constructs .

About Storage Association

q Private variables are undefined on entry and
exit of the parallel region

q A private variable within a parallel region has
no storage association with the same
variable outside of the region

q Use the firstprivate and lastprivate clauses
to override this behavior

q We illustrate these concepts with an example

OpenMP Data Environment

double a[size][size], b=4;
#pragma omp parallel private (b)
{ }

shared data
a[size][size]

T0 T1 T2 T3

private data
b =?

Private variable b
becomes undefined on
exit from region

private data
b =?

private data
b = 8

private data
b = 6

OpenMP Data Environment

6

 program sort
 common /input/ A(10)
 integer index(10)

C$OMP PARALLEL
 call work (index)

C$OMP END PARALLEL
 print*, index(1)

subroutine work (index)
common /input/ A(10)
integer index(*)
real temp(10)
integer count
save count
 ………… !

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

OpenMP Private Clause
q  private(var) creates a local copy of var for each

thread.
q  The value is uninitialized
q  Private copy is not storage-associated with the original
q  Parallel region does not modify original variable

7

 IS = 0
C$OMP PARALLEL DO PRIVATE(IS)
 DO J=1,1000

 IS = IS + J
 END DO
C$OMP END PARALLEL DO
 print *, IS

IS was not
initialized

IS here is not
storage-associated
with the private
variable with the
same name

✗

(In)Visibility of Private Data

8

#pragma omp parallel private(x) shared(p0, p1)

Thread 0

X = …;

P0 = &x;

Thread 1

X = …;

P1 = &x;

/* references in the following line are not allowed */
… *p1 … … *p0 …

q  You can not reference another’s threads private variables … even if you have
a shared pointer between the two threads.

The Firstprivate And Lastprivate Clauses

firstprivate (list)

q  All variables in the list are initialized with the
value the original object had before entering
the parallel construct

q  The thread that executes the sequentially last
iteration or section updates the value of the
objects in the list

lastprivate (list)

Firstprivate Clause

q  firstprivate is a special case of private.
q  Initializes each private copy with the corresponding

value from the master thread.

10

 IS = 0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
 DO 20 J=1,1000
 IS = IS + J
20  CONTINUE
C$OMP END PARALLEL DO
 print *, IS

The value of IS here is not
influenced by the computation in
the parallel region

Each thread gets its own IS
with an initial value of 0

✔ ✗

Lastprivate Clause

q  Lastprivate passes the value of a private variable
from the last iteration to the variable of the master
thread

11

 IS = 0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
C$OMP& LASTPRIVATE(IS)
 DO 20 J=1,1000

 IS = IS + J
20  CONTINUE
C$OMP END PARALLEL DO
 print *, IS

IS is defined as its value at the last
iteration (i.e. for J=1000)

Each thread gets its own IS
with an initial value of 0

✔

A Data Environment Checkup
q  Consider this example of PRIVATE and FIRSTPRIVATE

q  Are A,B,C local to each thread or shared inside the parallel region?
q  What are their initial values inside and after the parallel region?

12

C variables A,B, and C = 1
C$OMP PARALLEL PRIVATE(B)
C$OMP& FIRSTPRIVATE(C)

Inside this parallel region ...
Ø  “A” is shared by all threads; equals 1
Ø  “B” and “C” are local to each thread.

–  B’s initial value is undefined
–  C’s initial value equals 1

Outside this parallel region ...
Ø  A has value from parallel region. The values of “B” and “C” are not

influenced by code inside region.

OpenMP Reduction

13

q  If it’s the sum of all J values that you need, there is a way to
do that too.

q  We have already seen how

 IS = 0
C$OMP PARALLEL DO REDUCTION(+:IS)
 DO 1000 J=1,1000

 IS = IS + J
1000 CONTINUE
 print *, IS

Result variable is shared by default

OpenMP Reduction

q  An accumulation operation across threads
q  Inside a parallel or work-sharing construct:

q  A local copy of each list variable is made and initialized
depending on the “op” (e.g. 0 for “+”).

q  Compiler finds standard reduction expressions containing
“op” and uses them to update the local copy.

q  Local copies are reduced into a single value and
combined with the original global value.

q  The variables in “list” must be shared in the enclosing
parallel region.

14

reduction (operator: list)
reduction ([operator | intrinsic]) : list)

C/C++
Fortran

Reduction Operands/Initial Values

q  Associative operands used with reduction
q  Initial values are the ones that make sense

mathematically

15

Operand Initial value

+ 0

* 1

- 0

.AND. All 1’s

Operand Initial value

.OR. 0

MAX 1

MIN 0

// All 1’s

The Default Clause

default (none | shared | private | threadprivate)

q  No implicit defaults; have to scope all variables explicitly
none

q  All variables are shared

q  The default in absence of an explicit "default" clause

q  All variables are private to the thread

q  Includes common block data, unless THREADPRIVATE

shared

private

q  All variables are private to the thread; pre-initialized
firstprivate

default (none | shared)

Fortran

C/C++

Default Clause Example

17

 itotal = 1000
C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)
 np = omp_get_num_threads()
 each = itotal/np
 ………
C$OMP END PARALLEL!

 itotal = 1000
C$OMP PARALLEL PRIVATE(np, each)
 np = omp_get_num_threads()
 each = itotal/np
 ………
C$OMP END PARALLEL

Are these
two codes
equivalent?

yes

Example - Parallelizing Bulky Loops

for (i=0; i<n; i++) /* Parallel loop */
{
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more data and work in this loop>
 }

}

Step 1: “Outlining”

ü  Still a sequential program

ü  Should behave identically

ü  Easy to test for correctness

ü  Simplifies the parallelization

for (int i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
}

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more work in this loop>
 }

}

Step 2: Parallelize

ü  Minimal scoping required

ü  Less error prone

#pragma omp parallel for private(..) shared(..)

for (int i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
} /*-- End of parallel for --*/

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more work in this loop>
 }

}

OpenMP Threadprivate

q  Makes global data private to a thread and persistent,
thus crossing parallel region boundary
q  Fortran: COMMON blocks
q  C: File scope and static variables

q  Different from making them PRIVATE
q  With PRIVATE, global variables are masked.
q  THREADPRIVATE preserves global scope within each thread

q  Threadprivate variables can be initialized using COPYIN
or by using DATA statements.

q  Some limitations on use of threadprivate
q  Consult specification before using this feature

21

A Threadprivate Example

22

 subroutine poo
 parameter (N=1000)
 common/buf/A(N),B(N)
!$OMP THREADPRIVATE(/buf/)
 do i=1, N
 B(i)= const* A(i)
 end do
 return
 end!

 subroutine bar
 parameter (N=1000)
 common/buf/A(N),B(N)
!$OMP THREADPRIVATE(/buf/)
 do i=1, N
 A(i) = sqrt(B(i))
 end do
 return
 end!

q  Consider two different routines called within a parallel region.

Because of the threadprivate construct, each thread executing these routines has
its own copy of the common block /buf/.

Values of threadprivate are persistent across parallel regions

The Copyin Clause
copyin (list)

q  Applies to THREADPRIVATE data only

q  At the start of the parallel region, data of the master thread is
copied to the thread private copies

 common /cblock/velocity
 common /fields/xfield, yfield, zfield

! create thread private common blocks

!$omp threadprivate (/cblock/, /fields/)

!$omp parallel &
!$omp default (private) &
!$omp copyin (/cblock/, zfield)

Example:

Data now
available to
threads

Copyprivate

24

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()
{
 int Nsize, choice;

 #pragma omp parallel private (Nsize, choice)
 {
 #pragma omp single copyprivate (Nsize, choice)
 input_parameters (Nsize, choice);

 do_work(Nsize, choice);
 }
}!

q  Used with a single region to broadcast values of private variables from
one member of a team to the rest of the team.

C++ And Threadprivate

❑ OpenMP 3.0 clarified where/how threadprivate
objects are constructed and destructed

❑ Allows C++ static class members to be
threadprivate

class T {
 public:
 static int i;
 #pragma omp threadprivate(i)
 ...
};

Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Work-sharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example

26

OpenMP Runtime Functions

q  OpenMP provides a set of runtime functions
q  They all start with “omp_”

q  These functions can be used to:
q  Query for a specific feature, value or setting

q  E.g. what is my thread ID?
q  Change a setting

q  E.g. to change the number of threads in next parallel
region

q  A special category consists of the locking functions

C/C++ : Need to include file <omp.h>
Fortran : Add “use omp_lib” or include file “omp_lib.h”

OpenMP Library Routines

q Modify/Check the number of threads
q  omp_set_num_threads(), omp_get_num_threads(),

omp_get_thread_num(), omp_get_max_threads()
q Are we in a parallel region?

q  omp_in_parallel()
q How many processors in the system?

q  omp_num_procs()

28

OpenMP Library Routines
q  To use a known, fixed number of threads used in a program,

(1) tell the system that you don’t want dynamic adjustment of the
number of threads, (2) set the number of threads, then (3) save the
number you got.

29

#include <omp.h>
void main()
{ int num_threads;
 omp_set_dynamic(0);
 omp_set_num_threads(omp_num_procs());
#pragma omp parallel
 { int id=omp_get_thread_num();
#pragma omp single
 num_threads = omp_get_num_threads();
 do_lots_of_stuff(id);
 }
}

Protect this op since memory
stores are not atomic

E.g. Request as many threads
as you have processors.

Disable dynamic adjustment of the
number of threads.

Even in this case, the system may give you fewer threads than
requested. If the precise # of threads matters, test for it and respond
accordingly.

OpenMP Runtime Functions
Name Functionality
omp_set_num_threads Set number of threads
omp_get_num_threads Number of threads in team
omp_get_max_threads Max num of threads for parallel region
omp_get_thread_num Get thread ID
omp_get_num_procs Maximum number of processors
omp_in_parallel Check whether in parallel region
omp_set_dynamic Activate dynamic thread adjustment

 (but implementation is free to ignore this)
omp_get_dynamic Check for dynamic thread adjustment
omp_set_nested Activate nested parallelism

 (but implementation is free to ignore this)
omp_get_nested Check for nested parallelism
omp_get_wtime Returns wall clock time
omp_get_wtick Number of seconds between clock ticks

Schedule-Related Functions

q  Makes schedule(runtime) more general
q  Can set/get schedule with library routines:

 omp_set_schedule()
 omp_get_schedule()

q  Implementations are also allowed to add
their own schedule kinds

Nested Parallelism

q  Allows parallel regions to be contained in each other
q  Often accomplished by having parallel regions in different

functions
q  Required: OMP_NESTED=true or omp_set_nested(1)

q  Else the inner parallel region will be executed by a team of
one thread (may happen anyway)

q  Total number of threads created is the *product* of the
number of threads in the teams at each level

q  Use omp_set_num_thread(n) or the num_threads() clause

Multiple levels of nesting team sizes can be defined via the
q  OMP_NUM_THREADS environment variable
q  setenv OMP_NUM_THREADS 4,2

Nested Parallelism Support

q  Environment variable and runtime routines to
set/get the maximum number of nested active
parallel regions

OMP_MAX_ACTIVE_LEVELS
omp_set_max_active_levels()
omp_get_max_active_levels()

q  Environment variable and runtime routine to
set/get the maximum number of OpenMP
threads available to the program

OMP_THREAD_LIMIT
omp_get_thread_limit()

Nested Parallelism
Master Thread

Outer parallel
region

Nested
parallel region

Note: Nesting level
can be arbitrarily deep

3-way parallel

9-way parallel

3-way parallel Outer parallel
region

Nested Parallelism Support
❑  Settings can apply to level

q  Allow, for example, calling omp_set_num_threads() inside
a parallel region to control the team size for next level of
parallelism

❑  Library routines to determine
q  Depth of nesting

q  omp_get_level()

q  omp_get_active_level()

q  IDs of parent/grandparent etc. threads

q  omp_get_ancestor_thread_num(level)

q  Team sizes of parent/grandparent etc. teams

q  omp_get_team_size(level)

OpenMP Locking Routines

q  Locks provide greater flexibility than critical regions and
atomic updates:

q  Possible to implement asynchronous behavior
q  Not block structured

q  The so-called lock variable is a special variable:
q  C/C++: type omp_lock_t and omp_nest_lock_t for nested locks
q  Fortran: type INTEGER and of a KIND large enough to hold an

address

q  Lock variables are manipulated through the API only
q  Using a lock variable without appropriate initialization is

illegal, and behavior is undefined

Locking Routines

❑  Simple locks: may not be locked if already in a locked state
❑  Nestable locks: may be locked multiple times by the same

thread before being unlocked
❑  The interface for functions dealing with nested locks is similar

(but using nestable lock variables):

Simple locks Nestable locks
omp_init_lock omp_init_nest_lock
omp_destroy_lock omp_destroy_nest_lock
omp_set_lock omp_set_nest_lock
omp_unset_lock omp_unset_nest_lock
omp_test_lock omp_test_nest_lock

OpenMP Locking Example

Other Work

parallel region - begin

TID = 0 TID = 1

Protected
Region

acquire lock

release lock

Protected
Region

acquire lock

release lock

Other Work

parallel region - end

♦ The protected region
contains the update of a
shared variable

♦ One thread acquires the
lock and performs the
update

♦ Meanwhile, the other
thread performs some
other work

♦ When the lock is released
again, the other thread
performs the update

Locking Example - The Code
 Program Locks

 Call omp_init_lock (LCK)

!$omp parallel shared(LCK)

 Do While (omp_test_lock (LCK) .EQV. .FALSE.)
 Call Do_Something_Else()
 End Do

 Call Do_Work()

 Call omp_unset_lock (LCK)

!$omp end parallel

 Call omp_destroy_lock (LCK)

 Stop
 End

Initialize lock variable

Check availability of lock
(also sets the lock)

Release lock again

Remove lock association

Example Output Using 2 Threads
 TID: 1 at 09:07:27 => entered parallel region
 TID: 1 at 09:07:27 => done with WAIT loop and has the lock
 TID: 1 at 09:07:27 => ready to do the parallel work
 TID: 1 at 09:07:27 => this will take about 18 seconds
 TID: 0 at 09:07:27 => entered parallel region
 TID: 0 at 09:07:27 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:32 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:37 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:42 => WAIT for lock - will do something else for 5 seconds
 TID: 1 at 09:07:45 => done with my work
 TID: 1 at 09:07:45 => done with work loop - released the lock
 TID: 1 at 09:07:45 => ready to leave the parallel region
 TID: 0 at 09:07:47 => done with WAIT loop and has the lock
 TID: 0 at 09:07:47 => ready to do the parallel work
 TID: 0 at 09:07:47 => this will take about 18 seconds
 TID: 0 at 09:08:05 => done with my work
 TID: 0 at 09:08:05 => done with work loop - released the lock
 TID: 0 at 09:08:05 => ready to leave the parallel region
Done at 09:08:05 - value of SUM is 1100

Note: program was instrumented to get this information

Used to check the answer

OpenMP Environment Variables/1

q  Be careful when relying on defaults (because they are
compiler dependent)

OpenMP Environment Variable IBM XL Compilers

OMP_NUM_THREADS
64 (BG/Q)

number of available
processors (other systems)

OMP_SCHEDULE “schedule,[chunk]” auto

OMP_DYNAMIC {TRUE | FALSE} FALSE
OMP_NESTED {TRUE | FALSE} FALSE

OMP_STACKIZE “size [B|K|M|G]”
256 MB (32 bit)

up to available resource (64
bit)

OMP_WAIT_POLICY [ACTIVE | PASSIVE] PASSIVE

OMP_MAX_ACTIVE_LEVELS 5

OpenMP Environment Variables/2

OpenMP Environment Variable Default Oracle
Solaris Studio

OMP_THREAD_LIMIT

64 (BG/Q)
max(OMP_NUM_THREADS,

number of availabe
processors) (other systems)

OMP_PROC_BIND {TRUE | FALSE}
TRUE (BG/Q, FALSE is

ignored)
FALSE (other systems)

Implementing The Fork-Join Model

Use	
 the	

OMP_WAIT_POLICY	

environment	
 variable	
 to	

control	
 the	
 behavior	
 of	

idle	
 threads	

Values:	
 ACTIVE,	
 PASSIVE	

?

worker
threads

worker
threads

?
barrie

r

paralle
l

region

worker
threads

worker
threads

barrie
r

paralle
l

region

master
thread

About The Stack

void myfunc(float *Aglobal)
{
 int Alocal;

}

Aglobal

#omp parallel shared(Aglobal)
{
 (void) myfunc(&Aglobal);
}

Variable Alocal is in private memory,
managed by the thread owning it,
and stored on the so-called stack

Set stacksize via OMP_STACKSIZE
environment variable

Alocal
Thread

Alocal
Thread Alocal

Thread

Alocal
Thread

Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Work-sharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example

45

Tasking In OpenMP

q  Tasking was introduced in OpenMP 3.0
q  Until then it was impossible to efficiently

implement certain types of parallelism
q  Recursive algorithms
q  Linked lists, ...

q  The initial functionality was very simple by
design
q  The idea was (and still) is to augment tasking as

we collectively gain more insight and experience

The Tasking Concept In OpenMP

Thread

Generate
tasks

Thread

Thread

Thread

Thread

Ex
ec

ut
e

ta
sk

s

The Tasking Construct

!$omp task

#pragma omp task Define a task:

q  A task is a specific instance of executable code and its data
environment

q  A task is generated when a thread encounters a task construct or a
parallel construct. Comprised of a task region and data environment.

q  A task region consists of all code encountered during the
execution of a task.

q  The data environment consists of all the variables associated
with the execution of a given task. It is constructed from the
data environment of the generating task at the time the task is
generated.

Tasking - Who Does What And When ?

q  Assumption: all tasks can execute independently
q  When any thread encounters a task construct,

a new task is generated
q  Tasks can be nested (but not for the faint of heart)

q  Execution of a generated task is carried out by
one of the threads in the current team
q  This is subject to the thread's availability and thus

could be immediate or deferred until later
q  Completion of the task can be guaranteed using

a task synchronization construct
q  a taskwait or a barrier construct

Task Completion
Explicit wait on the completion of child tasks:

int fib(int n) {
 int x, y;
 if (n < 2) return n;
 else {
 #pragma omp task shared(x)
 x = fib(n-1);
 #pragma omp task shared(y)
 y = fib(n-2);
 #pragma omp taskwait
 return x + y;
 }
}

!$omp taskwait

#pragma omp taskwait

Does not include descendents of child tasks

Tasking Example
int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 #pragma omp single
 {
 printf(“A “);
 #pragma omp task
 {printf("race ");}
 #pragma omp task
 {printf("car ");}
 printf(“is fun to watch “);
 }
 } // End of parallel region

 printf("\n");
 return(0);
}

What will this program print using
2 threads ?

Tasking Example
$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

A is fun to watch race car
$./a.out

A is fun to watch race car
$./a.out

A is fun to watch car race
$

Tasking Example
int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 #pragma omp single
 {
 printf(“A “);
 #pragma omp task
 {printf("car ");}
 #pragma omp task
 {printf("race ");}
 #pragma omp taskwait
 printf(“is fun to watch “);
 }
 } // End of parallel region

 printf("\n");return(0);
}

What will this program
print using 2 threads ?

Tasking Example
$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
$
A car race is fun to watch
$./a.out
A car race is fun to watch
$./a.out
A race car is fun to watch
$

Tasks are executed first now

Clauses On The Task Directive

if(scalar-expression) if false, create an undeferred task:
 encountering thread must suspend
 the encountering task region, immediately
 execute the current task region until it is
 completed. Helps avoid small tasks.

untied any thread can resume after suspension
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression) if true, the generated task is a final task
mergeable if the task is an undeferred task or an

 included task, the implementation may
 generate a merged task

Data Scoping in Tasks
int a;
void foo()
{

int b, c;

#pragma omp parallel private(b)
{

int d;
#pragma omp task
{

int e;
// Scope of a: shared
// Scope of b: firstprivate
// Scope of c: shared
// Scope of d: firstprivate
// Scope of e: private

 }
 }
}

q  Static and global
variables are shared

q  Automatic storage
(local) variables are
private

q  Variables are
firstprivate unless
shared in the
enclosing context

Task Scheduling Points In OpenMP

q  Whenever a thread reaches a task scheduling
point, it may suspend the current task in order to
execute a different task bound to the current team

q  Task scheduling points are implied at:
q  The point immediately following the generation of an

explicit task
q  After the last instruction of a task region
q  In taskwait and taskyield regions
q  In implicit and explicit barrier regions

q  The implementation may insert task scheduling
points in untied tasks

q  The user may define additional scheduling points

Tied and Untied Tasks

q  Default: Tasks are tied to the thread that first
executes them
q  Tasks created with the untied clause are never tied to

a thread
q  Take care with some constructs, e.g. thread ids, locks

q  This affects execution behavior after a task
switch at a task scheduling point

q  If the suspended task region is for a tied task, the initially
assigned thread resumes execution of the suspended
task subsequently
q  If it is untied, any thread may resume its execution

Example: A Linked List

59

An Overview of OpenMP



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example - A Linked List

 while(my_pointer) {

 (void) do_independent_work (my_pointer);

 my_pointer = my_pointer->next ;

 } // End of while loop





Example: A Linked List with Tasking

60

An Overview of OpenMP



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example - A Linked List With Tasking
 my_pointer = listhead;

 #pragma omp parallel
 {
 #pragma omp single nowait
 {
 while(my_pointer) {
 #pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 }
 } // End of single - no implied barrier (nowait)
 } // End of parallel region - implied barrier

OpenMP Task is specifi ed here
(executed in parallel)

Taskyield #include <omp.h>
void something_useful();
void something_critical();
void foo(omp_lock_t * lock, int n)
{
for(int i = 0; i < n; i++)
#pragma omp task
{
something_useful();
while(!omp_test_lock(lock)) {
#pragma omp taskyield
}
something_critical();
omp_unset_lock(lock);
}
}

#pragma omp taskyield

!$omp taskyield

q  The taskyield directive
specifies that the current
task can be suspended in
favor or execution of a
different task

q  Hint to the runtime
The waiting task may be suspended

here so that the executing thread
can perform other work.

Final clause

q  For recursive problems that perform task decomposition

q  stop task creation at a certain depth exposes
q  enough parallelism while reducing overhead.

q  Warning: Merging the data environment may have side-
effects

#pragma omp task final(expr)

!$omp task final(expr)

void foo(bool arg)
{
 int i = 3;
 #pragma omp task final(arg) firstprivate(i)
 i++;
 printf(“%d\n”, i); // will print 3 or 4 depending on arg
}

Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Work-sharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example

63

64

Let’s pause for a quick recap by example:
Numerical Integration

∫ 4.0
(1+x2)

dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Δx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

65

PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i<= num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

66

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads; double x, pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x)
{

 id = omp_get_thread_num();
 #pragma omp single
 nthreads = omp_get_num_threads()

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

}
 for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;

}

OpenMP recap:
Parallel Region

You can’t assume that
you’ll get the number of
threads you requested.

Prevent write conflicts with
the single.

Performance
may suffer due
to false sharing
of the sum
array.

Promote scalar to an array
dimensioned by number of
threads to avoid race
condition.

67

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads; double x, pi, sum;

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x, sum)
{

 id = omp_get_thread_num();
 #pragma omp single
 nthreads = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 #pragma omp critical
 pi += sum * step;

}
}

OpenMP recap:
Synchronization (critical region)

Note: this method of
combining partial sums
doesn’t scale very well.

No array, so
no false
sharing.

68

OpenMP PI Code Recap :
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)
 for (i=0;i<= num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

Note: we created a parallel
program without changing
any code and by adding 4

simple lines!

i private by
default

For good OpenMP
implementations,
reduction is more

scalable than critical.

69

OpenMP recap :
Use environment variables to set number of threads

#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i<= num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}
In practice, you set number

of threads by setting the
environment variable,

OMP_NUM_THREADS

70

MPI: Pi program
#include <mpi.h>
static long num_steps = 100000;
void main (int argc, char *argv[])
{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 for (i=my_id; i<num_steps ; i+numprocs)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;
}

#include <stdlib.h>
#include <sys/time.h>
…

void * compute_pi(void *dat)
{
 int threadid = ((thr_data_t*)dat)->threadid;
 int num_threads = ((thr_data_t*)dat)->num_threads;
 int num_steps = ((thr_data_t*)dat)->num_steps;
 pthread_mutex_t *mtx = ((thr_data_t*)dat)->mtx;
 double *sump = ((thr_data_t*)dat)->sump;
 int i;
 double step;
 double x, local_sum;

 step = 1.0 / num_steps;

 local_sum = 0.0;
 /* round robin distribution of iterations */
 for (i = threadid; i < num_steps; i += num_threads) {
 x = (i - 0.5)*step;
 local_sum += 4.0 / (1.0 + x*x);
 }

 pthread_mutex_lock(mtx);
 *sump = *sump + local_sum;
 pthread_mutex_unlock(mtx);
 return NULL;
}

71

POSIX Threads, Pi Calculation
int main(int argc, char **argv)
{
…

 /* start pi calculation */
 threads = malloc(num_threads * sizeof *threads);
 step = 1.0 / num_steps;
 pthread_mutex_init(&mtx, NULL);

 /* spawn threads to work on computing pi */
 for (i = 0; i < num_threads; i++) {
 dat[i].threadid = i;
 dat[i].num_threads = num_threads;
 dat[i].num_steps = num_steps;
 dat[i].mtx = &mtx;
 dat[i].sump = ∑
 pthread_create(&threads[i], NULL, compute_pi,
 (void *)&dat[i]);
 }
 /* join threads */
 for (i = 0; i < num_threads; i++) {
 pthread_join(threads[i], NULL);
 }
 pi = step * sum;
 free(dat);
 pthread_mutex_destroy(&mtx);
 free(threads);
…
}

Requires explicit thread/data management

Example: Seismic Data Processing (SDP)
for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{
 Loadline(iLineIndex,...);

 for(j=0;j<iNumTraces;j++)
 for(k=0;k<iNumSamples;k++)
 processing();

 SaveLine(iLineIndex);
}

72

Load
Data

Process
Data

Save
Data

Timeline

First OpenMP Version of SDP Code

for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{
 Loadline(iLineIndex,...);
 #pragma omp parallel for

 for(j=0;j<iNumTraces;j++)
 for(k=0;k<iNumSamples;k++)
 processing();

 SaveLine(iLineIndex);
}

73

Load
Data

Process
Data

Save
Data

Timeline

Better performance, but
not too encouraging

Overhead for
entering and leaving
the parallel region

Example: Overlap I/O, Processing
#pragma omp parallel
#pragma omp sections

{
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) read_input(i);
 (void) signal_read(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_read(i);
 (void) process_data(i);
 (void) signal_processed(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_processed(i);
 (void) write_output(i);
 }
 }
} /*-- End of parallel sections --*/

Processing Thread

Input Thread

Output Thread

Another OpenMP Version of SDP Code

Loadline(nStartLine,...); // preload the first line of data
#pragma omp parallel
{
 for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
 {
 #pragma omp single nowait
 {// loading the next line data, NO WAIT!
 Loadline(iLineIndex+1,...);
 }
 #pragma omp for schedule(dynamic)

 for(j=0;j<iNumTraces;j++)
 for(k=0;k<iNumSamples;k++)
 processing();

 #pragma omp single nowait
 {
 SaveLine(iLineIndex);
 }
 }
}

75

Load
Data

Process

Data
Save
Data

Load
Data

Process

Data
Save
Data

Load
Data

Load
Data

Process

Data

Timeline

All 41 examples are available on line!

As well as a forum on http://www.openmp.org

Download the examples and discuss in forum:
http://www.openmp.org/wp/2009/04/
download-book-examples-and-discuss

Summary and Outlook

q  We have seen features of OpenMP and
some examples of their use
q  Powerful, flexible, portable API
q  Worksharing, synchronization; runtime routines for

dynamic threadcount, nesting, ..

q  What is coming?
q  The latest features in OpenMP 4.0
q  Using OpenMP in conjunction with MPI
q  More about optimization
q  Practical experience

